Finite Free Resolutions and 1-Skeletons of Simplicial Complexes
نویسنده
چکیده
A technique of minimal free resolutions of Stanley–Reisner rings enables us to show the following two results: (1) The 1-skeleton of a simplicial (d − 1)-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank d − 1 is d-connected.
منابع مشابه
SOLVABILITY OF FREE PRODUCTS, CAYLEY GRAPHS AND COMPLEXES
In this paper, we verify the solvability of free product of finite cyclic groups with topological methods. We use Cayley graphs and Everitt methods to construct suitable 2-complexes corresponding to the presentations of groups and their commutator subgroups. In particular, using these methods, we prove that the commutator subgroup of $mathbb{Z}_{m}*mathbb{Z}_{n}$ is free of rank $(m-1)(n-1)$ fo...
متن کاملMinimal free resolutions that are not supported by a CW-complex
In [1] it is shown that every monomial ideal admits a simplicial resolution (Taylor’s resolution) and that some minimal free resolutions are supported in simplicial complexes (Scarf ideals, monomial regular sequences). This idea is generalized in [2] where cellular resolutions are introduced. The authors show that every monomial ideal admits a resolution supported in a regular cell complex (the...
متن کاملGeneralized Complete Intersections with Linear Resolutions
We determine the simplicial complexes ∆ whose Stanley-Reisner ideals I∆ have the following property: for all n ≥ 1 the powers In ∆ have linear resolutions and finite length local cohomologies.
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کامل